Biological synthesis of nanoparticles and their uses in the field of agriculture


  • Haifaa Abass Hussein Department of Horticulture, College of Agriculture, University of Al-Qadisiyah, Iraq
  • Sulaf Hamid Taimooz Department of Horticulture, College of Agriculture, University of Al-Qadisiyah, Iraq


Nanomaterials, Biological synthesis, Environment, Agriculture


During the past years, the world tended to a wide use of nanomaterials in various fields due to their properties that similar materials of large sizes does not have. Nanotechnology is one of the modern technologies that are involved in many fields, including agriculture, as it aims to use technology that is less harmful to human health and the environment. Environmental protection is one of the most prominent applied fields that nanotechnology pays great attention to due to the connection between human health and the environmental conditions in which they live. Therefore, it seeks to prepare Nanomaterials in a biological way, which is one of the easiest, fastest, cheapest and safest ways for the environment. Microorganisms or extracts of plant parts (roots, stems, leaves, seeds and peels of fruits) are used to produce natural Nanomaterials for many minerals, including iron and zinc oxides, as they are essential elements for plant growth, so the study aimed to manufacture Nanomaterials from plant extracts to produce metal oxides, such as iron oxide, zinc and copper and their effect on improving plant growth.


Download data is not yet available.


Madkour, L. H. (2019). Environmental impact of nanotechnology and novel applications of nano materials and nano devices. In Nanoelectronic Materials (pp. 605-699). Springer, Cham.

Visweswara Rao, P., & Hua Gan, S. (2015). Recent advances in nanotechnology-based diagnosis and treatments of diabetes. Current Drug Metabolism, 16(5), 371-375.

Singh, P., Kim, Y. J., Zhang, D., & Yang, D. C. (2016). Biological synthesis of nanoparticles from plants and microorganisms. Trends in Biotechnology, 34(7), 588-599.

Irshad, S., Riaz, M., Anjum, A. A., Sana, S., Saleem, R. S. Z., & Shaukat, A. (2020). Biosynthesis of ZnO nanoparticles using Ocimum basilicum and determination of its antimicrobial activity. Journal of animal and plant Sciences, 301, 185-191.

Ribeiro, J. J. K., da Silva Porto, P. S., Pereira, R. D., & Muniz, E. P. (2020). Green Synthesis of Nanomaterials: most cited papers and research trends. Research, Society and Development, 9(1), e54911593-e54911593.

Attia, T. S., & Elsheery, N. I. (2020). Nanomaterials: scope, applications, and challenges in agriculture and soil reclamation. In Sustainable Agriculture Reviews 41 (pp. 1-39). Springer, Cham.

El-Seedi, H. R., El-Shabasy, R. M., Khalifa, S. A., Saeed, A., Shah, A., Shah, R., ... & Guo, W. (2019). Metal nanoparticles fabricated by green chemistry using natural extracts: biosynthesis, mechanisms, and applications. RSC advances, 9(42), 24539-24559.

Patil, R. S., Kokate, M. R., Shinde, D. V., Kolekar, S. S., & Han, S. H. (2014). Synthesis and enhancement of photocatalytic activities of ZnO by silver nanoparticles. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 122, 113-117.

Nnadozie, E. C., & Ajibade, P. A. (2020). Green synthesis and characterization of magnetite (Fe3O4) nanoparticles using Chromolaena odorata root extract for smart nanocomposite. Materials Letters, 263, 127145.

Rostamizadeh, E., Iranbakhsh, A., Majd, A., Arbabian, S., & Mehregan, I. (2020). Green synthesis of Fe. sub. 2O. sub. 3 nanoparticles using fruit extract of Cornus mas L. and its growth-promoting roles in Barley. Journal of Nanostructure in Chemistry, 10(2), 125-131.

Sukumar, S., Rudrasenan, A., & Padmanabhan Nambiar, D. (2020). Green-synthesized rice-shaped copper oxide nanoparticles using Caesalpinia bonducella seed extract and their applications. ACS omega, 5(2), 1040-1051.

Sorbiun, M., Mehr, E. S., Ramazani, A., & Fardood, S. T. (2018). Green synthesis of zinc oxide and copper oxide nanoparticles using aqueous extract of oak fruit hull (jaft) and comparing their photocatalytic degradation of basic violet 3. International Journal of Environmental Research, 12(1), 29-37.

Jadhav, M. S., Kulkarni, S., Raikar, P., Barretto, D. A., Vootla, S. K., & Raikar, U. S. (2018). Green biosynthesis of CuO & Ag–CuO nanoparticles from Malus domestica leaf extract and evaluation of antibacterial, antioxidant and DNA cleavage activities. New Journal of Chemistry, 42(1), 204-213.

Bordbar, M., Sharifi-Zarchi, Z., & Khodadadi, B. (2017). Green synthesis of copper oxide nanoparticles/clinoptilolite using Rheum palmatum L. root extract: high catalytic activity for reduction of 4-nitro phenol, rhodamine B, and methylene blue. Journal of Sol-Gel Science and Technology, 81(3), 724-733.

Pansambal, S., Gavande, S., Ghotekar, S., Oza, R., & Deshmukh, K. (2017). Green synthesis of CuO nanoparticles using Ziziphus mauritiana L. extract and its characterizations. International journal of Scientific Research in Science and Technology, 3, 1388-1392.

Liu, D., Liu, L., Yao, L., Peng, X., Li, Y., Jiang, T., & Kuang, H. (2020). Synthesis of ZnO nanoparticles using radish root extract for effective wound dressing agents for diabetic foot ulcers in nursing care. Journal of Drug Delivery Science and Technology, 55, 101364.

Abdullah, F. H., Bakar, N. A., & Bakar, M. A. (2020). Low temperature biosynthesis of crystalline zinc oxide nanoparticles from Musa acuminata peel extract for visible-light degradation of methylene blue. Optik, 206, 164279.

Gawade, V. V., Gavade, N. L., Shinde, H. M., Babar, S. B., Kadam, A. N., & Garadkar, K. M. (2017). Green synthesis of ZnO nanoparticles by using Calotropis procera leaves for the photodegradation of methyl orange. Journal of Materials Science: Materials in Electronics, 28(18), 14033-14039.

Prasad, T. N. V. K. V., & Elumalai, E. (2011). Biofabrication of Ag nanoparticles using Moringa oleifera leaf extract and their antimicrobial activity. Asian Pacific Journal of Tropical Biomedicine, 1(6), 439-442.

Ramesh, R., Catherine, G., Sundaram, S. J., Khan, F. L. A., & Kaviyarasu, K. (2021). Synthesis of Mn3O4 nano complex using aqueous extract of Helianthus annuus seed cake and its effect on biological growth of Vigna radiata. Materials Today: Proceedings, 36, 184-191.

Abisharani, J. M., Devikala, S., Kumar, R. D., Arthanareeswari, M., & Kamaraj, P. (2019). Green synthesis of TiO2 nanoparticles using Cucurbita pepo seeds extract. Materials today: proceedings, 14, 302-307.

Ajel, M.M. (2019). Acomparative Study to prepare ananometerial for the use of different plant extracts. MSC. Thesis, College of Science, Dhi Qar University, Iraq.

Mehrotra, A., Nagarwal, R. C., & Pandit, J. K. (2010). Fabrication of lomustine loaded chitosan nanoparticles by spray drying and in vitro cytostatic activity on human lung cancer cell line L132. Journal of Nanomedic Nanotechnology, 1(4), 103-110.

Tothill, I. (2011). Biosensors and nanomaterials and their application for mycotoxin determination. World Mycotoxin Journal, 4(4), 361-374.

Arora, A., & Padua, G. W. (2010). Nanocomposites in food packaging. Journal of Food science, 75(1), R43-R49.

Sondi, I., & Salopek-Sondi, B. (2004). Silver nanoparticles as antimicrobial agent: a case study on E. coli as a model for Gram-negative bacteria. Journal of Colloid and Interface Science, 275(1), 177-182.

Khodakovskaya, M. V., De Silva, K., Biris, A. S., Dervishi, E., & Villagarcia, H. (2012). Carbon nanotubes induce growth enhancement of tobacco cells. ACS nano, 6(3), 2128-2135.

Zhang, W. X. (2003). Nanoscale iron particles for environmental remediation: an overview. Journal of Nanoparticle Research, 5(3), 323-332.

Sharma, P., Bhatt, D., Zaidi, M. G. H., Saradhi, P. P., Khanna, P. K., & Arora, S. (2012). Silver nanoparticle-mediated enhancement in growth and antioxidant status of Brassica juncea. Applied Biochemistry and Biotechnology, 167(8), 2225-2233.

El-Argawy, E.,M.M.H. Rahal, A.El-Korany, E.M.Elshabrawy and R.M.Eltahan (2017). Efficacy of some nanoparticles to control damping off and root rot of sugar beet in el behira governarate. Asian Journal .of plant Pathology, 11(3), 35-47.

Thakur, S., S.Thakur and R. kumar (2018). Bio-nanotechnology and its role in agriculture and food industry. Journal of Molecular and Genetic Medicine, 12(2), 1747-1862.

Ahsan, T. (2020). Biofabrication of silver nanoparticles from Pseudomonas fluorescens to control tobacco mosaic virus. Egyptian Journal of Biological Pest Control, 30, 1-4.

Hassan, S. E. D., Fouda, A., Radwan, A. A., Salem, S. S., Barghoth, M. G., Awad, M. A., ... & El-Gamal, M. S. (2019). Endophytic actinomycetes Streptomyces spp mediated biosynthesis of copper oxide nanoparticles as a promising tool for biotechnological applications. JBIC Journal of Biological Inorganic Chemistry, 24(3), 377-393.

Rai, M., Ingle, A. P., Paralikar, P., Anasane, N., Gade, R., & Ingle, P. (2018). Effective management of soft rot of ginger caused by Pythium spp. and Fusarium spp.: emerging role of nanotechnology. Applied Microbiology and Biotechnology, 102(16), 6827-6839.

Khatami, M., Varma, R. S., Heydari, M., Peydayesh, M., Sedighi, A., Agha Askari, H., ... & Khatami, S. (2019). Copper oxide nanoparticles greener synthesis using tea and its antifungal efficiency on Fusarium solani. Geomicrobiology Journal, 36(9), 777-781.

Soubeih, K. A., & Agha, M. K. (2019). Comparative studies using nanotechnology on fungal diseases defense to productivity improvement of squash crop. Alexandria Science Exchang Journal, 40(2), 143-155.



How to Cite

Hussein, H. A., & Taimooz, S. H. . (2021). Biological synthesis of nanoparticles and their uses in the field of agriculture. International Research Journal of Advanced Science, 2(2), 45-50. Retrieved from